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Abstract--Calculations have been made of the velocity and temperature profiles for fully-developed 
turbulent flow in annular channels with roughened core rods. A unique set of boundary values tor 
dimensionless velocity and temperature near the rough surface, together with a universal eddy viscosity 
model, serve to predict the friction factor and Stanton number of one particular surface in a wide variety 
of flow channels. Comparison with experimental data for nominally similar surfaces suggests that the 

method is accurate enough for practical purposes. 

NOMENCLATURE 

B, parameter in logarithmic velocity distribution; 
Cp, specific heat of fluid at constant pressure; 
d, diameter; 
de, equivalent diameter; 
6, boundary layer thickness; 
e, rib height; 
e +, non-dimensional rib height or rib Reynolds 

number, eu,, . 
P 

f, friction factor; 
kt, turbulent eddy conductivity; 
K, universal constant in logarithmic inner law; 
v, kinematic viscosity of fluid; 
vt, turbulent eddy viscosity; 
P, function defined by equation (2.5.2); 
p, rib pitch; 
Pr, Prandtl number; 
Prt, turbulent Prandtl number; 
Re, Reynolds number; 
r, radius; 
ro, radius of zero shear surface; 
p, density of fluid; 
St, Stanton number; 
T, fluid temperature; 
T ÷, non-dimensional fluid temperature, 

(Tw-  T) pu_~,C, p, 
qw 

where subscript w refers to wall values; 
U 

U + non-dimensional fluid velocity, - -  ; 
Nt 

u~, friction velocity, ~ / ~ ,  where ~w is the wall 

shear stress; 

y, distance from the effective origin of a surface. 

Subscripts 
1/2, associated with inner/outer wall, either directly 

or by transformation. 

1. I N T R O D U C T I O N  

THE DEVELOPMENT of ribbed heat transfer surfaces for 
the fuel elements of the Advanced Gas-Cooled Reactor 
has demanded a method of comparing the thermal 
performance measured in single-pin tests. The measure- 
ments have been made with various heights of ribbing 
on various diameters of pin in various diameters of 
smooth channel. The required method must therefore 
relate the measured performance to a common ge- 
ometry of flow channel. 

The transformation due to Hall [1] defines a friction 
factor 

A -- ½pu?' 

where U1 is the bulk velocity of the fluid in the inner 
region between the pin, of radius rl, and the surface of 
zero shear stress, of radius r0. In general, for a given 
geometry of roughening 

ft  ~ fl(e, rl, ro, U1, v) (1.1) 

which may be written 

f l  = fl(e/del,  dl/deb Rex), (1.2) 

where 

421 

2(r~-r~) 
de, = - - ,  da = 2rl 

r l  
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and e is the rib-height. Because of experimental un- 
certainties, particularly in the manufacture of geometri- 
cally similar ribbed surfaces, the dependence of.f~ on 
these parameters is difficult to define (see Lee [2]). 

However on the hypothesis that the flow away from 
the immediate vicinity of the ribs is governed only by 
the local shear stress distribution in fully-developed 
flow, it is possible to predict this dependence. More 
precisely, for a particular shear stress distribution 
(defined in fully-developed flow by ro, rl and r2), the 
mean velocity profiles, when normalized by the appro- 
priate friction velocity, u,, will be similar, whatever 
the character of the roughness generating the shear 
profile. This is an extension of the principle of Reynolds 
number similarity and is implied in the results of 
Liu et al. [3], who showed that for a boundary layer 
of thickness, eS, over a variety of rough surfaces, the 
distribution of v,/~u~, where v, is the turbulent eddy 
viscosity, was a unique function of )'/~. A further 
extension of the principle is suggested by the data of 
Jonsson and Sparrow [4], who demonstrated that, to 
a good approximation, the eddy viscosity distribution 
in confined flows is a universal one, independent of the 
shear profile, if 6 is taken to be the distance of the 
surface from that of zero shear. 

It is noted in passing that this result is incompatible 
with the hypothesis of a universal velocity distribution, 
for if the radius ratio of the flow annulus, rdro, is 
small, the shear stress distribution has significant 
curvature, so that the velocity distribution differs from 
that in a pipe. Such a hypothesis forms the basis of a 
calculation method recently published by Maubach 
[5], but it is clearly belied by the velocity profiles 
measured by Lee [2]. 

In this work, calculations of friction factor and 
Stanton number are made using eddy viscosity distri- 
butions which are invariant with respect to surface 
roughness, together with "boundary values" of dimen- 
sionless velocity and temperature. For a given surface 
roughness, these boundary values are usually un- 
affected by the distribution of velocity and temperature 
in the bulk of the fluid: once they are determined by 
matching the computational results to those of a single 
experiment, the performance of that surface in any 
concentric flow annulus may be predicted. 

2. CALCULATIONS 

2.1 Calculation procedure 
The calculations were performed on an IBM 360 

using a program, code-name CONAN, for fully- 
developed incompressible turbulent flow in concentric 
annuli. The program is based upon one originally 
written by Ying [6] and later developed by Durst [7], 
and it has been shown by Lawn and Elliott [8] to 

agree well with hydrodynamic experimental data when 
applied to the smooth annulus. 

In essence, the program selects a Reynolds number 
and estimates from an empirical correlation the friction 
factor associated with the outer wall. A first estimate 
of r0 (in the presence of a rough inner wall) is that it 
lies 0 '3(r2-rl)  from the outer wall, from which the 
wall shear stresses, and hence eddy viscosity distri- 
butions (see 2.2), for the inner and outer regions can 
be derived. Integration proceeds from both walls so 
that, using the appropriate boundary values (see 2.5), 
velocity distributions up to the zero shear surface are 
obtained, and the amount by which they fail to match 
is used as a criterion for the adjustment of r0 for the 
next calculation. Iteration continues until the velocities 
match and then the exact value of the Reynolds number 
for that velocity distribution is calculated. If this does 
not correspond to the Reynolds number specified, the 
outer wall friction factor is adjusted and the calculation 
is repeated until the correspondence is as close as 
desired. 

Heat transfer with uniform flux from the core-rod 
may then be described by calculation of the temperature 
from an eddy conductivity distribution (see 2.3), and 
integration of the energy equation to obtain the heat 
flux distribution. The variation of physical properties 
is neglected, so the results must be compared with 
data extrapolated to a wall-to-bulk temperature ratio 
of unity. 

2.2 Eddy viscosity model 
Jonsson and Sparrow [4] have shown that a cor- 

relation of the form : 

. . . . .  v, . . . .  F (  y~'2 ~ (2.2.1) 
Iro-r,.2lu~, ~ k l r o - r , . d /  

provides an accurate representation of the variat ion of  
eddy viscosity in each of the two flow regions of an 
all-smooth annulus. A ramp function, found to be 
successful for moderate radius ratios by Lawn and 
Elliott [8], was also used here for the annulus with a 
rough core-rod. Thus: 

= 

for ) ' 1  < 0.233 
r 0 - -  r 1 

= 0.325 × 0"233 = 0"076 (2.2.2) 

Y l  for 0.233 < < 1, 
F o - - r  1 

and similarly for the outer flow region. 
The discontinuity of v, at ro, present in the model, 

was eliminated by Durst [7], by allowing the effective 
viscosity on each side ofro to be influenced by the other. 
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In the present work, it was found that the best fit to 
experimental data was obtained by allowing the smooth 
surface viscosities to be influenced by the rough but 
not vice-versa. In view of the much greater flow area 
associated with the rough wall, this seemed a reason- 
able modification. 

2.3 Eddy conductivity 
The eddy conductivity, kt, was calculated from the 

eddy viscosity, assuming a constant value for turbulent 
Prandtl number, 

Vt 
Pr, = --.  (2.3.1) 

kt 

On the evidence of Gowen and Smith [9], Pr~ = 0"90 
was chosen for the present calculations in which 
Pr = 0"745. 

2.4 The origin of  co-ordinates for rouoh surfaces 
The distances Yl and Yz are here the effective 

distances from the surfaces, obvious in the case of the 
smooth wall, but ambiguous in the case of the rough 
wall. The origin of ya is often taken to be either the 
crest or the root of the ribs. Neither of these definitions 
is necessarily consistent with a logarithmic velocity 
profile of universal gradient in regions of constant 
stress, such as would be predicted by (2.2.2). In fact, 
the constant of 0"325 in (2.2.2) is very much smaller 
than the value of K -~ 0"40 normally used in pipe flow. 
There are two reasons for this. In the first place, the 
expression is the "best fit" ramp function for vt: a 
greater gradient close to the wall and a smaller one 
as y / ( ro -  rl) --* 0'233 would probably be an even better 
fit, but this would destroy the simplicity of the ex- 
pression. Secondly, the results of Lawn and Elliott [8] 
for smooth annuli suggest that a lower value of gradient 
than that for a pipe is appropriate for annular  passages 
of moderate radius ratio. 

It was found by Lawn and Hamlin [10] that a 
universal logarithmic inner law is not observed for 
surfaces with transverse square ribs of pitch-to-height 
ratio 7.2, if the root of the ribs is taken as the origin, 
although the analysis in that work admittedly included 
velocity measurements outside the "constant stress" 
layer. Further analysis of that data and tests on really 
large-scale ribbed surfaces have indicated that a dis- 
placement of the origin by one rib height, e, below the 
root is necessary to fit the data to the universal 
logarithmic inner law: 

U + = l l n Y l  +B.  (2.4.1) 
K e 

This displacement of origin for p/e = 7.2 may be 
compared with the results of Perry and Joubert [11], 
Liu et al. [3], and Bettermann [12], all of whom found 
the effective origin to lie between the crest and root of 
the rib for p/e = 4, and those of Hanjalic and Launder 
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[13], who found a displacement of 0'4e below the root 
for pie = 10. That a surface with p/e ,-~ 7 should have 
the deepest origin might be expected, for although it 
has a large enough inter-rib distance for flow re- 
attachment (it is not a cavity flow), this distance is not 
large enough for the individual ribs to be effectively 
isolated. According to Abbott and Kline [14], the 
reattachment point lies 8e behind an isolated rib. It is 
this property that gives maximum frictional resistance 
to surfaces with pie ~ 7, as shown by Wilkie [15]. 

2.5 Boundary values 
The eddy viscosity distributions (2.2.2) were dis- 

continued before the walls were reached. Near the 
smooth outer wall, this occurred at y2u~2/v = 30 and 
from there to the surface, the van Driest [16] eddy 
viscosity distribution was used, This effectively gives 
the correct value of U~- at y~- = 30 and so may be 
regarded as being equivalent to a boundary value, 
although of course the true boundary condition is 
U + z = 0 a t y ~ - = 0 .  

Near the rough inner wall, the situation is com- 
plicated by the variations in velocity in the direction 
of flow as it goes over the ribs. Again from the results 
of work on large-scale ribs, it has been found that these 
variations become negligible 3e from the rib tips (5e 
from the effective origin) and so a value of U + at 
y~/e = 5, which will apply uniformly along the bound- 
ary, may be specified. This is of course equivalent to 
specifying the value of B in (2.4.1). For surfaces with 
transverse square ribs and pie = 7.2, 

+ 
U(yl= se) = 6'80 (2.5.1) 

was chosen, implying B = 2"96 if K = 0-419, as sug- 
gested by Patel [17]. This should hold for sufficiently 
high e + and sufficiently low e/dea. 

The resistance to heat transfer of the flow between 
the ribs and ya/e = 5 was expressed in the form of a 
value of T + =- (Tw- T)pu~, Cp/c~'~ at yl /e  = 5. This value 
was calculated from a "P function", of the type pro- 
posed by Jayatillaka [11], which is defined by: 

T + = Prt(U + + P), (2.5.2) 

and here U + = 6.80. 
Analysis of data for three-dimensional roughness 

elements led Jayatillaka to a correlation: 

P of_ Pr°V°e +0"36. (2.5.3~ 

It was assumed that a correlation of the same form 
would apply to two-dimensional elements. The best fit 
to experimental data for Pr = 0"745 (CO2) was obtained 
with: 

P = 1.72 Pr °'7%+ 0.36. (2.5.4) 

Although no data is available to test the Prandtl  number 
dependence for this case, the dependence on e + was con- 
firmed for one particular value of p/e (see section 3.2). 
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it was also necessary to specify the convective heat 
and mass fluxes through the flow region next to the 
ribbed surface, although these are not critical par- 

ameters if the ribs are small in comparison with the 

total flow area. 

3. C O M P A R I S O N  W I T H  E X P O N E N T A L  D A T A  

3.1 Isothermal data 
The data chosen for comparison with the cal- 

culated values of friction factor are those of Lee [2] 
obtained in an air rig. Lee initially tested six pins of 

differing diameters with transverse-ribbed roughness 
elements, all of the same type but of different height, 
in four different diameters of smooth channel. The 
method used to obtain the transformed values of fric- 
tion factor and equivalent diameter, quoted in Table 1, 
is described in Lee's paper. Attention is here con- 

centrated upon the untransformed friction factors, 
however; these were taken from the original data. The 
values at Re, = 6 x 105 and Re2 = l05 were each inter- 

polated from about six results obtained over a range 
of Reynolds numbers. 

It is seen from Table 1 that, after the various adjust- 
ments specified in section 2, C O N A N  consistently 

predicts both the overall friction factor and the surface 
of zero shear stress, or de,, (with standard deviations 
of about 3 per cent and 2 per cent respectively) for the 

very wide range of flow geometries tested by Lee. One 
surface, No. 3, was in fact excluded from the averaging, 
because in one test the results showed more scatter than 
usual, and in both tests, the discrepancy between 

measured and predicted values of fa was much larger 
than the standard deviation, suggesting that the surface 

Test Surface 
No, No. 

1 1 
2 2 
3* 3 

16 4 
5 2 
6 1 
7* 3 

12 4 
18 4 
11 5 
13 6 
14 6 
15 5 
19 5 

was atypical, probably in having slightly more rounded 

ribs than the others. 

The origin of this discrepancy is tound in the rough 
surface velocity profiles, Figs. 1 and 2. Whereas the 
boundary value ~){~l=5e)= 6"80, is a good fit to the 
results for surfaces 1, 4, 5 and 6, surface 3 requires a 
rather higher value, and so too (but to a lesser extent) 
does surface 2. This is manifested in predicted values 

of./i which are too large {Table !). 
Also apparent from Figs. 1 and 2 is that it is only 

when the zero shear surface is about 40e distant from 
the rib that any substantial portion of the profile varies 

as 12.4.1) with K = 0.419. This contradicts the assump- 
tion of Maubach [5] regarding the universality of the 

profiles. If ( t o - r l )  ~ 20e, then the approximately con- 
stant stress layer barely exists outside the region of 

axial velocity variations generated by the ribs. 

For each of the surfaces, the scatter in the measured 
values ofj~ is large, so that the interpolated values for 

Re2 = 105 are uncertain to +2  per cent. The average 
discrepancy between them and the predicted values of 
- 0 . 3  per cent therefore demonstrates that the com- 
plicated effect of geometry upon the smooth surface 

velocity profile beyond the universal inner law region, 
is adequately handled by the eddy diffusivity model, 

which includes an enhancement due to the influence 
of the high values of diffusivity associated with the 

rough wall opposite. 
Friction factors for four of the test results, embracing 

the extreme cases of large and small ribs in large and 
small radius ratio channels, are plotted against 
Reynolds number in Fig. 3. The predicted Reynolds 
number variation over the limited range of the tests 
is seen to be compatible with the experimental results 

in all four cases. 

Table I. Friction factor predictions: data of Lec [2] 

Re~ = 6 × 105 
- Re2 = 10 -~ 

Rib j e,/del .1"1 J2 
height e/r~ rl/r2 - 
e tmm) Measured Predicted Measured Predicted Measured Predicted Measured Predicted 

1.42 0.0378 0.5209 0.0127 0.0130 0-00958 0.00981 0.0281 0.0292 0-0051 0.0050 
1.42 0.0378 0-5209 0.0127 0.0130 0.00958 0.00981 0.0281 0.0292 0-0051 0-0050 
0-68 0.0257 0.3695 0.0085 0.0084 0.00340 0-00341 0.0180 0.0194 0.0052 0.0049 
0.38 0.0220 0.2375 0.0063 0.0063 0.00143 0-00142 0.0147 0.0152 0.0046 0.0047 
1.42 0.0378 0.4300 0.0102 0.0108 0.00639 0-00643 0-0233 0.0253 0.0049 0.0049 
1.42 0.0378 0.4300 0.0106 0-0108 0.00635 0.00643 0.0238 0.0253 0.0049 0.0049 
0.68 0.0257 0.3051 0.0073 0.0075 0.00253 0.00243 0.0162 0.0177 0.0050 0-0048 
0"38 0"0222 0"196l 0"0060 0"0058 0-00106 0-00107 0"0155 (t-0144 0"0046 0-0047 
0"38 0'0222 0"3292 0'0077 0"0075 0.00246 0"00243 0"0178 0"0172 0.0047 0-0048 
1"42 0"0830 0'1961 0"0081 0"0080 0"00320 0"00327 0-0257 0"0252 0.0047 0.0049 
0"38 0"0083 0'5230 0"0078 0'0078 0"00260 0.00251 0"0152 0'0148 0.0050 0.0049 
0"38 0"0083 0"6334 0-0100 0"0094 0-00403 0.00405 0"0177 0"0177 0"0051 0"0049 
1"42 0'0830 0"2375 0-0089 0"0089 0.00438 0.00441 0.0267 0.0268 0.0049 0.0049 
1"42 0"0830 0-3292 0"0111 0"0112 0.00785 0"00784 0'0293 0"0307 0"0052 0"0050 

Average % Discrepancy 0.0 ~ 0"5 + 1.2 -0-3 
% Standard Deviation 3"1 1.6 4.8 2"6 

* Excluded from averaging. 
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FIG. 1. Comparison of measured and predicted rough surface 
velocity profiles. 
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FIG. 2. Comparison of measured and predicted rough surface 
velocity profiles. 
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FIG. 3. Reynolds number variation of friction factor and 
Stanton number. 
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3.2 Heated pin data 
The data are those of Kimpton and Lyall [19], 

Wilkie [15], Watson [20] and White and White [21]. 
The basis of comparison is a situation of infinite 
thermal conductivity in the ribbed surface, a wall-to- 
bulk temperature ratio of unity, a Prandtl number of 
0-745 appropriate to CO2 and sharp rib profiles. Details 
of the corrections for finite thermal conductivity and 
other Prandtl numbers are given by Mantle et al. [22], 
for wall-to-bulk temperature ratios by Kimpton and 
Lyall [19], and for rib rounding by White and 
White [21]. 

Transformed results only are presented by Wilkie 
[15] and White and White [21], but another paper by 
Wilkie [23] gives details of the transformation and 
allows the overall Stanton numbers to be recovered. 
Kimpton's untransformed results were taken from the 
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Reference 

Kimpton and 
Lyall [19] 

Wilkie [15] 

Watson [20] 

White and 
White [21] 

Table 2. Slanton number predictions: data correlated by Kimpton and l.~all [ 19] 

Re1 = 8 ~: l0 s 
Rib 

height e/rl rl St St 
e Immt Measured Predicted 

0-26 0'0348 

f 
0"41 0"0172~ 
0"63 0 ' 0 2 6 0 [  
0"78  0'0322~" 
1'02 0"0422 / 
1"25 0-0518.) 
0"46  0"0172"~ 
0'68 0"0256/>. 
1"14 0"0428-- 

t 
0"24 0"0234 " 
0.28 0.0270 
0.37 0.0358 
0.37 0.0364 
0.48 0.0466 
0-56 0.0546 
0.60 0-0586 
0.65 0.0636 

0"430(I 0"00430 0-00469 
0.00397 0-00435 
0.00433 0"00456 

0'4606 0.00451 0"00465 
0-00494 0"00471 
0.00531 0.00475 
0.00438 0'00438 

0"5122 0.00462 0.00456 
0.00500 0.00465 
0.00433 0-00452 
0.00460 0-00458 
0-00456 0-00468 

0"4629 0-00470 0.00468 
0.00490 0-00472 
0.00486 0-00475 
0.00483 0.00476 
0.00510 0.00480 

Average ~o Discrepancy - 02 
o/ Standard Deviation 5.5 / o  

original data. It is these untransformed values that are 
compared in Table 2 with St calculated by C O N A N  
for Re1 = 8 x 105, since the program does not perform 
the Stanton number transformation, 

Once more the agreement is satisfactory in com- 
parison with the probable experimental errors and the 
uncertainty in the corrections to the data. As Kimpton's 
own untransformed Stanton number results are avail- 
able for a wide range of Reynolds numbers (he tested 
the same pin in both air and CO2), they are plotted 
in Fig. 3 to show that the predicted Stanton number 
variation is also correct. This implies that the depend- 
ence of the boundary values on e + is correct, provided 
e + is greater than 30, and perhaps for even smaller 
values, although B is likely to vary at low Reynolds 
number if the ribs are rounded. 

The difficulty of quantifying the extent to which ribs 
were rounded and the effect of the rounding upon the 
measured Stanton numbers in fact introduces consider- 
able uncertainty into the comparison with the predic- 
tions. Another factor is that some of the surfaces only 
nominally had p/e = 7"2: Watson's [20] largest ribs 
were in fact pitched at p/e = 6.5 and Kimpton's  at 
pie = 7.5, which may account for the particularly large 
discrepancies in those cases. In addition, it should be 
remarked that in several of the experiments the flow 
passage was less than 20 rib heights wide, so the 
boundary values may have been influenced by the 
outer flow. 

4. CONCLUSION 
Implicit in the procedure of section 2'1 is the gen- 

eration of a velocity profile with a maximum at the 
zero shear surface. This is known to be incorrect but 
because the velocity distribution in the core has only 
a secondary effect on the integral flow-parameters, it is 
an admissible defect in this work. 

The crucial parameters in the calculation method are 
of course the boundary values for velocity and tem- 
perature. However, as the effects of duct geometry are 
satisfactorily accounted for by the method, detailed 
velocity measurements are not required to define the 
functions B and P. For any particular surface, one 
test over a range of Reynolds numbers should be 
sufficient to establish by trial and error from the overall 
friction factor data, the appropriate functional depen- 
dence of B on e +, and this relation can be used in all 
subsequent calculations. Similarly, Stanton number 
data can be compared with predictions to define P(e*) 
for the particular surface. 

If the ribs are sharp and transverse to the flow and 
the rib Reynolds number is greater than 30, a value 
of B independent of e +, and P ~ e  +0"36, may be 
assumed for the surface. For  one surface of this type, 
on which the ribs are square and pitched 7.2 rib heights 
apart, the calculation method has been shown to 
adequately predict the velocity and temperature pro- 
files in the annular flow passage around various diam- 
eters of core-rod roughened by various heights of rib. 



Eddy viscosity 

Integral parameters  were predicted with a s tandard 
deviation of about  5 per cent. Greater  error  may be 
expected if the flow passage is less than about  20 rib 
heights wide but  the major  part  of the error  in the 
present compar ison is probably  due to lack of geometri- 
cal similarity in the actual surfaces. 

Acknowledgement This paper is published by permission 
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UTILISATION D'UN MODELE DE VISCOSITE TURBULENTE 
POUR L'ESTIMATION DU TRANSFERT THERMIQUE ET DE 
LA PERTE DE CHARGE POUR DES SURFACES RUGUEUSES 

Rrsumr--Des calculs de profils de vitesse et de temprrature ont 6t6 faits pour un 6coulement turbulent 
enti~rement drvelopp6 dans des canaux annulaires avec des barres centrales rugueuses. Un ensemble 
unique de valeurs limites pour la vitesse et la temprrature sans dimension prrs de la surface rugueuse, 
lires toutes deux par un mod6le universel de viscosit6 turbulente, est utilis~ pour l'estimation du 
coefficient de frottement et du nombre de Stanton d'une surface particulirre dans une large varirt+ de 
canaux d'rcoulement. Une comparaison avec des rrsultats exprrimentaux pour des surfaces /t peu prrs 

similaires montre que la mrthode est suffisament precise pour des buts pratiques. 

DER GEBRAUCH EINES SCHEINREIBUNGSMODELLS ZUR BESTIMMUNG VON 
W~RMETRANSPORT UND DRUCKABFALL AN RAUHEN OBERFLACHEN 

Zusammenfassung--Berechnungen der Geschwindigkeit und der Temperaturprofile fiir eine voll 
ausgebildete turbulente Str~Smung in ringfiSrmigen Kan~ilen mit Stabbi.indeln wurden durchgefiJhrt. Ein 
einziger Satz yon Grenzwerten fiir die dimensionslose Geschwindigkeit und die Temperatur in der N~ihe 
der rauhen Oberfliichen dient, zusammen mit einem universalen Scheinreibungsmodell, der Vorhersage 
des Reibungsfaktors und der Stanton-Zahl fiJr eine bestimmte Oberfl~iche bei einer groBen Zahl von 
Strt~mungskan~ilen. Vergleiche mit experimentellen Daten fiir nominell ~ihnliche Oberfl~ichen zeigen, dab 

die Methode ftir praktische Zwecke geni.igend genau ist. 
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ldCFIOYlb3OBAHIdE MO~EYli ' I  T~Pf i~ f lEHTHOITI  Bfl3KOCTId )lflJ:l P A C q ~ T A  
TEH. r lOOBMEHA I/! F IEPEFIA~A ~ABflEHidJ : I  l i P i d  T E q E H l d I 4  M E) I (~Y 

IIIE P O X O B A T b l M  14 FIOBE PXHOCT,q M I/1 

AuuoTauU~- -Hpoae~en  pacq~T npO~u~¢~ CrOpocrH n TeMnepaTypbJ ~ n  nO~HOCTB~ pa3a~Toro 
Typ6y~enTHoro Te~enn~ a ro~bueabtx Ka~a~ax c tuepoxoaaTbZMH CTepmflflMn. Yunaepca~buafl  
CnCTeMa norpaHnqHb~x yc~oaH~ a3fl 6e3pa3Mepno~ cKopocTH n TeMnepaTypb~ y LuepoxoaaTo~ 
noaepxnocTn, a Tar~e  y~naepca~,bua~ Moae3bTyp6y~euTHO~ a~3rOCTH c~y~aT a~fl pacq~Ta ro3~- 
~nunenTa TpeHnn U ~ac~a CTaHToHa OaHO~ OTae~buo~ noaepxnocrn  MHo~ecTaa KaHa~oa. Cpaane-  
n~e C 3KcHepHMeHTa.rlbHblMH ~aHHBIMH ~ HO~O~HBIX noaepxnocre~ canaeTenbcrayer  o TOM, HTO 

OnnCaHHbl~ MeTO~ hOCTaTOHHO TOqeH n ~pHro~eH ~afl npa~Tnqec~oro HCnO~b3OBaHn~. 


